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The well-known Mondrian-style images, aside from being aesthetically amusing, also reflect the core prin-
ciples of human vision in their viewing experience. First, when we see a Mondrian-style image consisting
only of a grid and primary colors, we may automatically interpret its causal history such that it was generated
by recursively partitioning a blank scene. Second, the image we observe is open to many possible ways of
partitioning, and their probabilities of dominating the interpretation can be captured by a probabilistic dis-
tribution. Moreover, the causal interpretation of a Mondrian-style image can emerge almost spontaneously,
not being tailored to any specific task. Using Mondrian-style images as a case study, we demonstrate the
generative nature of human vision by showing that a Bayesian model based upon an image-generation
task can support a wide range of visual tasks with little retraining. Our model, learned from human-synthe-
sized Mondrian-style images, could predict human performance in the perceptual complexity ranking, cap-
ture the transmission stability when images were iteratively passed among participants, and pass a visual
Turing test. Our results collectively show that human vision is causal such that we interpret an image
from the angle of how it was generated. The success of generalization with little retraining suggests that gen-
erative vision constitutes a type of common sense that supports a wide range of tasks of different natures.

Public Significance Statement
By using Mondrian-style images as a case study, this study demonstrated that modeling how humans
draw images can well explain how humans perceive images across a variety of tasks. This study suggests
that a deep understanding of how an image is generated can serve as a source of visual common sense.
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Contemporary visual art can be very abstract, to the extent that the art
vocabularymay be reduced to simple geometric shapes. This character-
istic is well illustrated by artist Piet Mondrian, whose influential
Neo-Plasticism style is characterized by only horizontal and vertical
lines aswell as primary colors. Despite its visual simplicity, the stacking
of rectangles in his signature painting can endure viewers’ sustained
attention. This is in part because the structure of this Mondrian-style
image is open to many potential explanations competing for the visual
interpretation. Such abstract artistic style nevertheless reflects several
core principles of human vision. First, vision is “causal,” automatically
interpreting the “history” of an image—how an imagewas sequentially

generated (e.g., Chen & Scholl, 2016; Freyd, 1987; Leyton, 1989).
Specific to the Mondrian-style image in Figure 1a, one particular struc-
tural interpretation represents one unique way to recursively “parse” a
blank scene into smaller pieces until the observed image is eventually
produced, as presented in Figure 1b. Second, vision is “probabilistic”
(e.g., Bennett et al., 1989; Rock, 1983) instead of a logically deductive
process. That is, one cannot deductively conclude that a particular gen-
erative process constitutes the history of an imagewhile other processes
do not. Specific to the Mondrian-style image in Figure 1a, it may be
the product of any one of the generative processes presented in
Figure 1d. Thus, to measure the plausibility of all possible processes
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quantitatively, probability becomes a necessary tool. For example, the
probabilities of generative processes based on the model we reported in
this study are shown in Figure 1c. Third, the causal interpretation of
vision serves as a common sense that emerges rather automatically
without any specification of a task. Imagine yourself in an art gallery
viewing a Mondrian-style image—are you purposefully engaging in
a particular task? The answer is most likely no. Nevertheless, we
believe that spontaneous causal vision can support a wide range of
tasks (e.g., Lake et al., 2015), a notion referred to as the “big tasks”
nature of human vision (Y. Zhu et al., 2020). The main focus of this
study is to show that the causal understanding of image generation in
vision can support a wide range of visual tasks.
Here, we explore the generative nature of human vision on

Mondrian-style images as a case study. We adopt a visual common-
sense perspective, applying a model to many different visual tasks
which it has never encountered before. In fact, the model we use
here is not trained on how humans analyze images, but on how
humans synthesize images. Our results offer direct support for the
analysis-by-synthesis perspective of human vision (Yuille &
Kersten, 2006). In the following sections, we will introduce the the-
oretical backgrounds of each of the core principles in human vision
and how they can guide psychophysical experiments, using
Mondrian-style images as a running example.

Vision as Inverse Graphics

“What I cannot create, I do not understand.”—Richard Feynman

All images are generated by certain causal processes, deployed spa-
tially and temporally. Once finished, the dynamic generation process
makes its exit, leaving behind only a static image. For humans, vision
is not just about precisely registering every pixel of an image as it is,
but includes a crucial process of recovering the causal history of an

image by “searching” for a plausible generation process. This mech-
anism is referred to as the analysis-by-synthesis process (Grenander,
1976; Yuille & Kersten, 2006; S.-C. Zhu & Mumford, 2007), also
known as inverse graphics (e.g., Kulkarni et al., 2015; Yildirim et
al., 2015). Analogous to computer graphics, a generative process is
a graphic program that procedurally creates a scene consisting of geo-
metrical entities and then uses it to render a 2D image. On the con-
trary, vision inverts the process, reconstructing the geometrical
entities and their relationships as graphic programs from a 2D image.

Here we illustrate the notion of inverse graphics on an iconic illu-
sion, the Kanizsa Triangle. We often see a white triangle in the
Kanizsa Triangle because it is the easiest way to construct an
image. For example, we can create a Kanizsa Triangle by (a) creating
three black circles, (b) placing them apart from each other, (c) putting
a triangle on top of them, and (d) painting the trianglewhite (Figure 2).
Generating a Kanizsa Triangle this way is much more efficient than
meticulously arranging three pac-man shapes to make the edges of
their mouths align to those of each other. Technically, for Figure 2,
it may be unjustifiable to call it an illusion, since a white triangle
was indeed present in the image created out of photoshop.

Historically, the inverse graphics perspective is deeply rooted
in constructivism, following the idea that the rich world we “see” is
often not directly accessible from stimuli but is nonetheless
constructed or interpreted by a vision based on those stimuli (e.g.,
Bruner, 1973; Gregory, 1970; Palmer, 1999; Rock, 1983; von
Helmholtz, 1867/1925). This constructivism idea has been used to
explain amodal completion (Kanizsa, 1976), color constancy
(Brainard & Freeman, 1997), size constancy (Geisler & Kersten,
2002), and many other visual phenomena (e.g., Adelson, 2000;
Palmer, 1999; Rock, 1983).

Recently, an increasing body of studies have been focused on
how vision understands images by recovering their causal history,

Figure 1
A Mondrian-Style Image and Its Possible Generative Processes
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Note. (a) Illustration of a Mondrian-style image. (b) Illustration of one specific process to create a Mondrian-style image by recursively partitioning an image
into smaller pieces. (c) The probabilities of all generative processes estimated by the human prior hierarchical Bayesian model that will be later reported in this
study. (d) All possible generative processes for a single Mondrian-style image. See the online article for the color version of this figure.
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especially on the perception of shapes. The idea is that “shape is time”—
static shapes contain temporal information that recapitulates the causal
histories of objects (Leyton, 1989, 1992). For example, the logo of
Apple Inc. is frequently viewed as a whole apple that was bitten, and
a dented can is often regarded as an undamaged can that was subse-
quently dented. An increasing number of studies have provided empir-
ical evidence supporting the perceptual causal history. A study showed
that causal history could bias people’s judgment on the geometric prop-
erties of static shapes: When a shape appeared like an object that has
been bitten, observers tended to compensate for the “missing part”
and perceive a symmetry axis biased toward that of the “complete”
shape of that object, instead of strictly following the shape’s true skele-
ton representations (Spröte et al., 2016). Further, humans could recog-
nize transformations subjected to objects: When an object was
deformed in its shape, observers were able to identify the type of defor-
mation; and when the object was partially deformed, observers could
perceive a clear distinction between its intact portions and deformed por-
tions (Schmidt et al., 2019). Moreover, observers even perceived a
motion illusion as if they chronologically relived the causal history:
When a change in the contours of a shape suggested a historical intru-
sion, observers perceived a gradual development of the intrusion that
was, in fact, made abrupt (Chen & Scholl, 2016).
More broadly, human performance in recognizing images has been

shown to be connectedwith how those images are generated. For exam-
ple, in studies on visual working memory, it has been shown that the
capacity of working memory can be explained by a model that recovers
the latent hierarchical structure of images (Brady & Tenenbaum, 2013;
Suchow et al., 2014). Moreover, recent studies on visual production,
although not particularly focusing on the analysis-by-synthesis perspec-
tive, have shown that generation and recognition of images recruit the
same visual representation in processing objects: Adults exhibited
enhanced recognition of objects after learning how to draw them (Fan
et al., 2018), and children exhibited parallel developmental changes
in drawing and recognition of visual concepts (Long et al., 2021).

Formulating Inverse Graphics as Bayesian Inference

Image generation is a one-to-one process from a graphic proce-
dure (cause) to an image (effect). On the contrary, inverse graphics
is a one-to-many process, from which an image can be explained by
a variety of graphic procedures. As an example, the same
Mondrian-style image, comprising a specific set of rectangular
pieces, can be rendered by multiple ways of partitioning a canvas.
Such a one-to-many inverse process is ill-posed for logical deduc-
tion (e.g., Bennett et al., 1989; Marr, 1982; Rock, 1983; von
Helmholtz, 1867/1925), yet it can be naturally represented by a prob-
abilistic distribution. Given the image, the task of vision is to find out
the posterior distribution of those explanations following Bayes’ rule
(Knill & Richards, 1996; Yuille & Kersten, 2006; S.-C. Zhu &

Mumford, 2007). This insight is neatly captured by the following
equation, though solving it can be computationally challenging.

P(graphics|image) = P(graphics, image)
P(image)

= P(image|graphics)× P(graphics)
P(image)

(1)

In Equation 1, the priorP(graphics) formulates an observer’s knowl-
edge about the scene preceding any observation. The likelihood
P(image|graphics), serving as the probability of rendering an image
given a graphic procedure, represents the image generation process.

TheBayesian approach has been adopted by thefield of cognitive sci-
ence in studying human vision. Early Bayesian cognitive modeling
studies mainly focus on 3D graphical concepts of simple objects
(Kersten et al., 2004; Knill & Richards, 1996), such as shaping (e.g.,
Freeman, 1996), lighting (Mamassian et al., 2002), viewpoint (e.g.,
Nakayama & Shimojo, 1992), surface geometry (e.g., Vetter & Troje,
1997), material reflectivity (e.g., Adelson, 2000), and object pose
(e.g., Richards et al., 1996).

To date, cognitive modeling of human vision has been embracing a
richer range of generative processes. For example, in a studyof shape rep-
resentation, a shape is assumed to be “grown” from a skeleton through a
stochastic generative process that recursively develops “ribs” from the
skeleton to support the contour of the shape. This representation enables
possibilities for a great variety of shapes (Feldman&Singh, 2006). In the
study of perceptual grouping, with the view that the configuration of
image elements is generated by a mixture of distinct objects, various per-
ceptual grouping problems could be solved within the framework of
Bayesian hierarchical clustering (Froyen et al., 2015). More recently,
the generative process has been more broadly defined as a probabilistic
program (Gelman et al., 2015; Goodman et al., 2008; Lake et al.,
2017), which includes statements, grammar, and recursions similar to
other programs. This idea has been reflected in applications such as
CAPTCHA recognition (Mansinghka et al., 2013), face analysis, body
pose estimation, object reconstruction (Kulkarni et al., 2015), and hand-
written letters analysis (Lake et al., 2015).

Testing Generative Vision With “Big Tasks”

One of the biggest advantages of a causal model is that a single
model can be generalized to multiple tasks, reflecting the general
characteristics of human intelligence. Such capability is discussed
in depth in a recent review article1 (Y. Zhu et al., 2020) that inte-
grates the causal perspectives from both the fields of computer vision
and cognitive science. In contrast to the mainstream “big data for
small tasks” methods commonly employed in building artificial

Figure 2
Illustration of an Efficient Way of Creating a Kanizsa Triangle by Photoshop

1 Author Tao Gao contributed to this review article.
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intelligence that are largely “empowered by large-scale annotated
data and end-to-end training using neural networks,” the article
calls for a “small data, big tasks” paradigm where the application
of a generative model can be generalized across multiple tasks
with little training data. This is because the causality in the genera-
tive process is relatively stable compared to the transient nature of
tasks that humans need to face. That is, what you do with an object
does not change how it was generated. Thus, the invariant nature
enables a causal model to be well adapted to novel situations with
little training (Pearl, 2000).
Evidence supporting the versatility of causal models has been man-

ifested in several cognitive science studies. In modeling intuitive phys-
ics, a physics engine model has been used for predicting both whether a
tower is stable and in which direction it will fall (Battaglia et al., 2013).
More related to vision, the same generative model of handwritten letters
has been used to solve different tasks, including classifying characters in
one-shot training, imitating a novel character, and recovering the
dynamic process of character generation (Lake et al., 2015). More
recently, one generative model of recursive visual concepts has been
applied in both classifying new concepts and generating new examples
of concepts (Lake & Piantadosi, 2020).
In the current study, we aim to demonstrate the generative nature of

human vision using the “big tasks” paradigm. Previously, a computer
vision model synthesizing Mondrian-style images (Roy & Teh, 2008)
has been built using a generalized Poisson Process. Here, we aim to
explore whether human vision explains Mondrian-style images
using the reconstruction of their causal history. Importantly, while
we developed a generative model for recognizing Mondrian-style
images, the focus is not on the model itself but on demonstrating
the utility of a deep integration of a generative model and human
psychophysics experiments. Specifically, we examined it through
the following perspectives of human vision. First, the tasks involved
should consist of both image generation and image interpretation,
two inseparable processes that lie at the central idea of
“analysis-by-synthesis” (e.g., Yuille & Kersten, 2006). This entails
that the model, learned from how humans generate Mondrian-style
images, can be transferred into modeling how humans interpret
those images.
Second, the tasks should measure the causal process both explicitly

and implicitly. In the explicit case, the task requires participants to rec-
ognize the causal history of an image; whereas in the implicit case, the
task itself is unrelated to the estimation of the image generation pro-
cess. Importantly, the generative process should be able to explain
visual performance regardless of whether it is explicit or implicit in
the task. To date, the field of human vision has accumulated a diverse
collection of implicit and explicit behavioral measurements of human
vision, on some of which our experiment method is grounded.
Third, while we are looking for a diversity of measurements for task

performance, we hope to find a unified approach formanipulating inde-
pendent variables so that results across different experiments can be
integrated. Since our model is probability-driven, we use the model’s
estimation of the probability of generating an image, otherwise
known as the P(image), as the major independent variable of the
study. Specifically, we measure how task performance varies as a func-
tion of P(image) (A detailed review of the theoretical implications of
P(image) can be found in the Discussion). This approach is different
from traditional psychophysics in which physical features are extracted
for manipulation. Although estimating the probability of an image is
necessarily affected by features, P(image) integrates and absorbs a

variety of visual features, offering an opportunity for experimenters
to utilize a single unified index to make predictions without the need
to identify each and every one of them.

Following the three perspectives under the “big task” paradigm, we
split the four human experiments in our study into two major parts.
Experiment 1 focused on image generation with the goal of eliciting
the subjective P(image) from participants’ minds. A “just cut it” task
was conducted where human participants were asked to create
Mondrian-style images by splitting a blank paper into pieces through
recursively applying horizontal and vertical divisions. Then, a model
of P(image) for Mondrian-style images was learned from samples of
human-generated data.

In the rest of the study, we conducted three visual tasks to demon-
strate that the very same image-generation model could be applied to
solve different image-interpretation tasks. Experiment 2 tested whether
the model could predict humans’ subjective complexity of images,
adopting the pairwise comparison paradigm (Thurstone, 1927). In
Experiment 3, we used a “telephone game” (Bartlett, 1932; Griffiths
& Kalish, 2007; Uddenberg & Scholl, 2018) where players formed a
chain to pass an image from the head to the tail, testing whether the
transmission stabilities of images exhibited by humans could be pre-
dicted by the model. In Experiment 4, we set up a visual Turing test
(Lake et al., 2015) to investigate whether the model could generate
responses indistinguishable from those of a human.

In the following section, we will introduce how we construct the
causal model of Mondrian-style image and conduct specific experi-
ments to test it under the “big task” paradigm.

A Generative Model on Mondrian-Style Images

In our study, we built a model on how to generate Mondrian-style
images, which can be represented as a “parse tree,” a tree structure
originally introduced for recursively parsing a sentence into words
as the terminal nodes of the tree (Chomsky, 1965). In our case, it is
the Mondrian-style image that is recursively parsed into rectangles.
For computational tractability, here we set a constraint to the number
of terminal nodes in a tree structure to 6. By doing this, we create an
image space containing all structured images that can be generated by
recursively splitting a scene with five horizontal or vertical cuts.

As illustrated in the causal graph (Figure 3), the exact method for
modeling the distribution of images follows a three-step image-
generation process: First, a parse tree is created; second, the scene
is split into different pieces given the tree; and third, every pixel in
the image is filled given the hierarchical partitions. By multiplying
the distributions of each procedure in the graph, we obtain the
joint distribution of all variables. The probability of an image is com-
puted by marginalizing the latent variables on the joint distribution,
following the mathematical formulations (Equations 2 and 3):

P(image, partition, tree) = P(tree)× P(partition|tree)
× P(image|partition) (2)

P(image) =
∑

partition, tree

P(image, partition, tree) (3)

Probability of Parse Tree P(tree)

A limited number of nodes can nevertheless create a large space of tree
structure. To assign a probability to each tree in a systematic way, we use
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the nested Chinese Restaurant Process (nCRP) to formulate the tree prior.
The nCRP recursively assigns a primitive unit to different branches of a
tree, with a certain probability of creating a new branch (Blei et al., 2010).
This provides nCRP the potential to create trees that allow for an unfixed
number of branching and assign a probability to each of them. As the
number of terminal nodes in a tree is fixed to 6, a total of 32 trees can
be generated. The only free parameter of the nCRP controls how likely
it will create a new branch. We refer to it as the “branching factor,” fol-
lowing the convention of the traditional Artificial Intelligence research on
tree search. A higher branching factor is more likely to generatewide and
shallow trees, whereas a lower branching factor is more likely to generate
narrow and deep trees. Thus, for all possible trees with limited branches
in our experiments, we create a categorical distribution over the limited
number of trees (Figure 4), with the parameter of branching factor con-
trolling how probability mass is allocated among these trees. Details of
the nCRP computation of trees are documented in Appendix A, and a
more comprehensive tutorial on the nCRP can be found in another
study (Blei et al., 2010).

Probability of Partition Given Parse Tree P(partition|tree)

After the number of branches under each node of a tree is deter-
mined, the model can then partition a blank scene into the

components of a Mondrian-style image. To model the uncertainty
between a vertical or horizontal cut, we assign equal probability to
each orientation. Yet another uncertainty arises regarding the sizes
of the cuts: What percentage of a part should each subpart occupy?
We model this by introducing an “evenness factor” parameter that
controls how likely a part will be split in an even fashion
(Figure 5). The higher the evenness factor, the more likely it is to
have subparts of similar sizes. It is modeled by a Dirichlet distribu-
tion, which can be intuitively understood as a dice factory that pro-
duces even dice or biased dice, depending on the evenness factor
(see Appendix A for further details). The evenness factor ranges
from 0 to 10 for practical reasons, in which case the probability of
even partitions increases with a greater value. An evenness factor
of 10 indicates a partition closely resembling an even split, whereas
an evenness factor of 0 indicates a highly uneven partition. An even-
ness factor of 1 indicates that all partitions, even and uneven, have
identical probabilities.

Figure 4
Illustration of the Effect of Branching Factor on P(tree)

… … … …
0.0

0.1

0.2

0.3

0.4
γ = 0.1

γ = 1.0

γ = 10.0

Shallow tree Deep tree

…

Note. Wide and shallow trees are more likely to be generated with a higher
branching factor, whereas narrow and deep trees are more likely to be gen-
erated with a lower branching factor. See the online article for the color ver-
sion of this figure.

Figure 5
Illustration of the Effect of the Evenness Factor on P(partition|tree)
With Two Partitions

… … … …

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Uneven partition Even partition Uneven partition

α = 0.1

α = 1.0

α = 10.0

Note. A high evenness factor is likely to result in a partition closely resem-
bling an even split, whereas a low evenness factor is likely to result in a
highly uneven partition. See the online article for the color version of this
figure.

Figure 3
Illustrations of a Hierarchical Bayesian Model for Synthesizing
Mondrian-Style Images

�
T

P

�

I

a)

b)

c)

Note. Images in the boxes on the right illustrate variables (see next section
for a detailed explanation) in the Bayesian network. (a) A parse tree (T) with
the branching factor (γ) as the hyperparameter. (b) A hierarchical partition
(P) with the evenness factor (α) as the hyperparameter. (c) The synthesized
Mondrian-style image (I) given the hierarchical partition (P).
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In our study, the branching factor and evenness factor were
learned from human-generated images in Experiment 1. They
serve as human prior distributions that are used to estimate a
P(image) for our central model, which we call the human prior hier-
archical Bayesian model (HP).

Baseline Models

Our experiments mainly rely on P(image) to predict human per-
formance. Hence, success in prediction is largely contingent upon
whether P(image) accurately captures the subjective estimation of
images in the human mind. To demonstrate that a causal model
learned from human-generated data (HP) is essential in predicting
humans’ visual interpretation, we also incorporate two baseline
models in the current study: (a) a “noninformative prior model”
(NP) that shares the same hierarchical Bayesian structure but lacks
human priors, instead of sampling the branching factor and evenness
factor from a noninformative uniform prior (details of the priors can
be found in Appendix B); and (b) a “feature multivariate Gaussian
model” (MG) that learns the summary statistics of features from
human-generated images, without inferring the causal structure of
those images.

Transparency and Openness

We report how we determined our sample size, all data exclu-
sions (if any), all manipulations, and all measures in the study,
following Journal Article Reporting Standards (JARS, Kazak,
2018). All data, analysis code, and research materials are avail-
able at https://osf.io/u62xb/ (Tang et al., 2021). Models were
implemented using Python, version 2.7 (van Rossum, 1995)
and the package NetworkX, version 2.1.1 (Hagberg et al.,
2008). Data were analyzed using Python, version 2.7 (van
Rossum, 1995). The design and analysis of this study have not
been preregistered.
All procedures of the experiments in this study were approved by

the ethics committee of the Department of Psychology and
Behavioral Sciences at Zhejiang University (XL201709021—
“Testing analysis-by-synthesis on Mondrian-style image”).

Experiments

Experiment 1: Just Cut It

To elicit the subjective P(image) from participants’minds, we first
set up an image generation task to collect human synthesized images
for training the models. In this image-generation task, participants

were requested to generate images by cutting a rectangle into six
pieces with horizontal and vertical cuts. They could apply their
cuts freely with a single constraint: only split one existing rectangle
at a time.

Method

Participants. Sixty (fifty for the training dataset, ten for the
testing dataset) undergraduate and graduate students at Zhejiang
University participated in this experiment in exchange for payment.

Procedure. Participants were only instructed for the legal
actions to split an image. The word “Mondrian” was never men-
tioned, nor was there any example image showing how to apply
cuts. Instead, participants split the image in whichever way they
felt intuitive. Figures are generated in two environments. For the
training dataset, twenty-five participants each drew their cuts on
blank paper with a pen, and another 25 participants drew their
cuts on the computer screen using a mouse (Figure 6). For the testing
dataset, ten participants drew their cuts on the computer screen. Each
participant was asked to generate two figures.

Results

Data Preprocessing. A demo showing how an image was gen-
erated on the computer step by step can be found at https://sites
.google.com/view/generativevision-commonsense. Sample
images generated in the two environments are shown in
Appendix B. The images drawn on the paper were pre-processed
with a computer vision line detection algorithm (Bradski, 2000)
to match the format of images drawn on the computer screen
(Figure 7). Two groups of images were merged, as the summary
statistics on them showed no significant difference (see
Appendix B for further details).

Model Training. Human-generated images were used to train
the following two models, using Maximize A Posterior Estimation
method (Bishop, 2006, Section 2.3).

For the HP model, the parameters of branching factor γ and even-
ness factor αwere learned from human data (Equation 4) and treated
as human priors in the following experiments.

P(g, a|images)/
∏
images

Pg, a(image)× P(g, a) (4)

The branching factor and the evenness factor were estimated by
the grid search method (Gelman et al., 2013, Chapter 5). Their pos-
terior estimation is illustrated as a heat map (Figure 8), with red indi-
cating a higher posterior and blue indicating a low posterior. The

Figure 6
Sequence of Applying Cuts on a Computer Screen Using a Mouse

Note. See the online article for the color version of this figure.
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results show that the posterior was maximized when γ= 0.9 and
α= 3.5. Intuitively, the results reflect that human-generated struc-
tured images were “balanced” in the following ways. In terms of
the structure of the tree, humans preferred to produce trees with 2–
3 layers—neither too deep/narrow nor too shallow/wide. In terms
of the ratio of each split, humans preferred even partitions within
each layer, but the preference was not exceedingly strict.
For the MG model, we select the logarithms of aspect ratios

and the sizes of all six primitive rectangles as the features to
describe images. In this sense, an image now is represented as
a vector of the logarithms of aspect ratios and sizes (x1ratio,
x2ratio,…, x6ratio, x1size, x2size,…, x6size). By the definition of
the Gaussian linear regression model, the probability of an
image is a multivariate-Gaussian distribution with feature means
of μ= (μ1ratio, μ2ratio,…, μ6ratio, μ1size, μ2size,…, μ6size) and a
covariance of Σ (a 12*12 matrix). The parameters of mean and
covariance were learned from human data (Equation 5).

P(m, S|images)/
∏
images

Pm, S(image)× P(m, S) (5)

Model Evaluation. Since model training concerns optimizing a
model’s estimated probability of given images, the models were
evaluated by their estimation on new images’ probabilities:
Models that predict new images with a larger likelihood are more
desired. Here, we adopted an approach commonly used in model
evaluation by computing the average log P(new images) of each
model from the parameters learned from human-synthesized images.
Following Bayesian model evaluation, each model was evaluated 30
times by drawing a sample of parameters from a posterior distribu-
tion over the parameter space instead of setting to the maximum a
posteriori. Each sample of parameters was applied to 20 testing
images from which the average log P(new images) was computed.
We began by demonstrating that the training for both the HP andMG

models was effective. Two types of images were used: One set of 20
images was generated by a new group of 10 human participants, and
another set was 20 nonhuman-synthesized images generated by the
NP model with an uninformative prior distribution that did not capture
any human bias. We predicted that the HP and MG models, trained
by human-synthesized images, could explain new human-synthesized
images significantly better than nonhuman-synthesized images, while
the NP model would show no difference in explaining the two. The
results are shown in Figure 9. As predicted, the differences between

the average log probabilities of two types of new imageswere significant
for the HP model, human-synthesized: M=−2.35, 95% CI [−2.33,
−2.37] and nonhuman-synthesized: M=−5.77, [−5.81, −5.73];
t(58)= 155.43, p, .001, d= 40.13, and the MG model, human-
synthesized: M=−11.80, [−11.88, −11.73] and nonhuman-
synthesized: M=−29.10, [−29.30, −28.90]; t(58)= 164.63,
p, .001, d= 42.51, but not for the NP model, human-synthesized:
M=−6.60, [−8.00, −5.21] and nonhuman-synthesized:
M=−7.16, [−8.07, −6.25]; t(58)= .68, p= .50, d= 0.18;
BF01= 3.13. These results showed that both the HP andMGmodels
were effectively trained for modeling human preference.

We further examined which of the trained models, the HP
model or the MG model, could better capture human preference.
The results in Figure 9 showed that the HP model significantly
outperformed the MG model in explaining new human images,
t(58)= 251.90, p, .001, d= 65.04. This result occurred despite

Figure 7
Illustration of Converting an Image on Paper Into the Format on a Computer Screen

Original Image Converted Image

Note. See the online article for the color version of this figure.

Figure 8
Heat Map Showing P(images) in Different Combinations of
Branching Factor and Evenness Factor

E
ve

n 
pa

rt
s

Shallow tree
Note. Dark gray away from the center indicates a low probability, medium
gray near the center indicates a middle probability and light gray in the center
indicates a high probablity. In the color version, blue indicates a low probabil-
ity, green indicates a middle probability and red indicates a high probability.
See the online article for the color version of this figure.
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a greater number of free parameters in the MG model and is
expected since the HP model accurately captures the causal gen-
erative process. The key focus of our study is how well these mod-
els can be generalized to various visual tasks besides generative
processes per se.

Experiment 2: Perceptual Complexity

Here we test whether the model could predict the perceptual com-
plexity of images, which can be quantitatively measured by
P(image). Intuitively, images with low probability will be perceived
as more complex with more information. This intuition is captured
by information theory (Shannon, 1948) in which the information
content of an image is defined as the negative logarithm of
P(image), as shown in Equation 6.

Information content (image) = − log2 Pg, a(image) (6)
In this experiment, 20 images were selected and sorted through

the pairwise comparison paradigm to estimate perceived

subjective complexity in humans: In each trial, participants were
simply presented with two images from the 20-image pool and
instructed to make a choice on which one seemed to be more com-
plex. After multiple trials of comparison, the ranking of all images
was computed. The three models we used (HP, NP, and MG)
predicted the ranking based on each of their computations of
P(image). For each model in each trial, the probability of identify-
ing an image as more complex was inversely proportional to
its estimated P(image). To capture human’s complexity ranking,
the model’s estimation of P(image) must be consistent with
that of humans. Importantly, participants were not instructed to
report anything related to the probabilistic interpretation of
images.

Method

Participants. Sixteen undergraduate and graduate students at
Zhejiang University participated in this experiment in exchange
for payment. Our research design and predicted effects were
novel. We decided in advance to use a sample size of 16 in all
the following visual experiments as we expected a large effect
size (d≥ 0.8).

Materials. Twenty images were sampled from the generative
model with great variance in their structures including tree topology
and partition evenness. Details regarding the sampled image can be
found in Appendix B.

Procedure. One hundred ninety possible pairwise combina-
tions could be derived from the 20 images. Each combination was
presented with a random image position (left-right or right-left),
resulting in a total of 190 trials. As the model is stochastic, each
run of the model generates a different result. We thus treated each
run of the model as a machine participant. To match the number
of human participants (16), each of the three models ran the paired-
comparison 16 times.

In each trial, after a 200 ms fixation and a 300 ms blank screen,
two images (20.48°× 15.36°) were presented on the screen with
25.60° between their centers horizontally. A sample of paired
image is shown in Figure 10. Participants then reported which of
the two images they perceived as more complex by pressing one

Figure 9
Results of Average Log Probabilities of Three Models in Explaining
New Images Synthesized by Humans and the NP Model
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Note. Error bars indicate standard errors. See the online article for the color
version of this figure.

Figure 10
A Sample of Two Images for Pair-Comparison With Their P(image)s

P(image)
8.72E-038.83E-02

Note. Only for illustration purpose, not shown to subjects. See the online article for the color version of this
figure.
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of two keys (“F” for the left image, “K” for the right). There was no
restriction on reaction time. Models reported which images were
more complex by estimating their P(image)s and then sampling
responses following Equation 7.

P(right image is more complex)

= 1− P(right image)
P(left image)+ P(right image)

(7)

Results

Human data were computed by the following procedure. First,
for each participant, the percentage of each image perceived as
more complex in all comparisons was computed and then con-
verted into a Z-score, indicating the ranking of an image’s com-
plexity. Then, for each image, the Z-scores from all participants
were added up as the estimated human-perceived complexity of
that image. All models’ Z-scores were computed exactly the
same way.
The correlations between humans and each model’s ranked com-

plexity of all 20 images are shown in Figure 11, with the x-axis as
the model-ranking Z-score and the y-axis as the human-ranking
Z-score. For the HP model, a strong positive correlation was
found (r= .91, 95% CI [.79, .97], p, .001). For the NP model,
a weaker but still positive correlation was found (r= .62, [.24,
.83], p= .004). For the MG model, there was no significant corre-
lation (r=−.03, [−.47, .42], p= .90; BF01= 3.59). Bayesian
Analysis showed that there is extreme evidence in favor of the
HP model being better than the NP model in explaining the human-
ranking Z-scores (BFHP, NP= 3.88× 104) and strong evidence in
favor of the NP model being better than the MG model in explain-
ing the human-ranking Z-scores (BFNP, MG= 26.13). Thus, we
found additional evidence supporting that the causality in the
Bayesian hierarchy model is essential in capturing human per-
ceived complexity, indicating that humans recovered the underly-
ing generative process when they interpreted the images. At the
same time, we learned that priors learned from human-generated
data also play an important role in encapsulating humans’ interpre-
tation of an image.

Experiment 3: Human Iteration

Here we use a different behavioral paradigm utilizing P(image) to
demonstrate the common-sense nature of generative vision.
Specifically, we aim to show how, within a series of human commu-
nications, images with different P(image)s all gradually converge
into the “prototype images” with high P(image)s.

We adopted the “human iterative message-passing” paradigm
that was originally introduced in studies on false memory
(Bartlett, 1932) and has been revived in recent studies as a powerful
tool for eliciting human priors (Griffiths & Kalish, 2007; Kalish
et al., 2007; Uddenberg & Scholl, 2018). It is essentially a “tele-
phone game” of images: An observer sees an image shortly and
then regenerates that image which will be passed to the next
observer. The iterative image-passing procedure will be repeated
until the end of the chain.

The iterative process can be considered an amplifier of
human priors, as in each iteration an observer injects their subjec-
tive bias into their reproduction of the image. Due to the limited
precision of human perception and memory, an image will
mutate as it is regenerated along with the procedure. However,
we predict that this mutation pattern is not random. With a model
of P(image), we expect that all images will gradually mutate to
the ones with high P(image)s in human prior. This mutation can
be measured by a loss of information content (Equation 8):
images at the end of the chains carry less information than those
at the start.

Information loss = Information(initial image)

− Information(initial image)

= − log2 Pg, a(initial image)

− (− log2 Pg, a(end image)) (8)

Furthermore, the magnitude of mutation is not a constant value.
An initial image with a high information content and a low
P(image) should mutate more dramatically, indicating low trans-
mission stability; inversely, an initial image with a low informa-
tion content and a high P(image) should mutate less, indicating
high transmission stability. This positive correlation between

Figure 11
Results of the Correlations Between the Model Z-Score and Human Z-Score of Subjective Complexity for All Three Models
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Note. Each point represents one image, and four representative images are illustrated here. See the online article for the color version of this figure.
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initial information content and information loss is the key predic-
tion in our experiment. However, while the P(image) plays a cen-
tral role in describing the mutation process, it cannot be obtained
explicitly. That is, we cannot directly ask human participants to
report their subjective P(image) but instead have to estimate it
by a model. Therefore, if the model estimates human P(image)
accurately, we should be able to observe a positive correlation
between initial information content and information loss estimated
by the model. Conversely, if the estimation is less accurate, the
model will be worse at explaining how images mutate in the iterative
image-passing procedure, manifested by a weaker or insignificant
correlation.

Method

Participants. Forty-eight undergraduate and graduate students
at Zhejiang University participated in this experiment in exchange
for payment. Participants were evenly split into three chains, each
with 16 participants.
Materials. Twenty new images were sampled with a procedure

identical to the one in Experiment 2 (Figure 12).

Procedure. Each chain contains 16 iterations, with one iteration
for one participant (Figure 13). Each iteration contains 20 trials, with
one trial for one image. Each trial started with a 200 ms fixation and a
300 ms blank screen, followed by an image (40.96° by 30.72°) pre-
sented at the center of the screen for 1,000 ms. Then the participant
regenerated the image on a computer screen by the same procedure
as in Experiment 1.

Results

For each model, all three chains shared the same initial information
content since their start images were identical. Samples of the image
passing chains with initial images of different information contents
are shown in Figure 14. The correlations between initial information
content and information loss in the three chains for all models are
shown in Figure 15, with each dot representing an image. For the
HP model, positive correlations were found in all three chains
(Chain A: r= .75, 95% CI [.46, .90], p, .001; Chain B: r= .77,
[.49, .90], p, .001; Chain C: r= .81, [.57, .92], p, .001). For the
NP model, positive correlations were also found in all three chains,
but with smaller coefficients compared to those of the HP model

Figure 13
Illustration of a Chain of Image-Passing Iteration

Initial image Image of iteration 1 Image of iteration 2
Participant 1 Participant 2

Note. One participant views an image generated by the previous participant and regenerates that image to
pass to the next participant. See the online article for the color version of this figure.

Figure 12
Samples of Initial Images Given as the Start of the Chains With Their Information Contents

Information content 
4.447.09 1.0810.47

Note. See the online article for the color version of this figure.
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(Chain A: r= .55, [.14, .80], p= .012; Chain B: r= .45, [.003, .74],
p= .049; Chain C: r= .65, [.30, .85], p= .002). For the MG
model, however, the correlations were not significant in all three chains
(Chain A: r= .30, [−.17, .65], p= .21, BF01= 1.72; Chain B:
r= .34, [−.12, .68], p= .15, BF01= 1.34; Chain C: r= .35, [−.12,
.68], p= .14, BF01= 1.28). The results show that the MG model can-
not estimate human subjective P(image) accurately, whereas both the
two hierarchical Bayesian models can. This suggests that the causal
generative process in Bayesian models plays a critical role in explain-
ing how images mutate through an iterative image-passing procedure.
Further, the greater strength in the correlation for the HP model indi-
cates that human priors learned from human-generated data are also
essential in capturing the message-passing process.

Experiment 4: Visual Turing Test

The Turing test is a test of a machine’s ability to exhibit intelli-
gent behavior equivalent to, or indistinguishable from, that of
humans. It is a thought experiment that has been arguably regarded
as the ultimate challenge for artificial intelligence (Turing, 1950).
To date, the Turing test has been adopted as an empirical research
paradigm in examining the validity of a cognitive model of the
human mind. The key to this paradigm is that the response made
by a model or human is not entirely open but limited within a cer-
tain space. For example, in a visual Turing test, the answers gener-
ated by humans or models were limited to a particular type of
written letter (Lake et al., 2015).
Here, we applied a visual Turing test to Mondrian-style images.

Although conventionally a Turing test examined judgments based

on the final stimuli, here we presented participants with parse trees
for making judgments since our focus was on the causal generative
process itself that humans or models recovered. In preparation for
the test, given a Mondrian-style image, participants were instructed
to recover a parse tree that they thought would best explain the
image. The same procedure was performed on a model, and all
parse trees from both humans and the model were collected for the
Turing test. Finally, a new group of human observers saw the dynamic
process of how an image was parsed step by step, with a parse tree
growing from the root. They then needed to identify whether the tree
was generated by a human or a model.

For both the HP and NP models, the parse tree was sampled from
the posterior distribution of tree structures conditioned on the image
by integrating out latent possible partitions (Equation 9). However,
the MG model failed to apply to this task as the task was causal in
nature. Instead, we introduced the uniform sample model (US) as
a new baseline model. It samples from all topologically correct
trees, as shown in Figure 1.

Pg,a(tree|image) =
∑

partition

Pg,a(tree|partition, img)

=
∑

partition

Pg,a(image, partition, tree)
Pg,a(image, partition)

(9)

Method

Participants. Sixty-four undergraduate and graduate students
at Zhejiang University participated in this experiment in exchange

Figure 14
Samples of Image-Passing Iterations With Initial Images of Different Information Contents

Initial image
with high 

information

Initial image
with median 
information

Initial image
with low 

information

Iteration 5Initial image Iteration 10 Iteration 16

Note. See the online article for the color version of this figure.
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for payment or course credit. Sixteen of them were the parsers
that provided parse trees which we used as human answers. The
other 48 participants were observers in the human–machine identifi-
cation task, evenly assigned to the three model groups. Each group
only discriminated human answers from those of one model.
Materials. Sixteen new images were generated using a proce-

dure similar to the one in previous experiments (See Appendix B
for further details).

Procedure. In the parsing task (parse tree generation), for each
of 20 Mondrian-style images, each participant was asked to draw a
parse tree (Figure 3a) with a pen that represented the most probable
generation process they believed for the observed image. These
parse trees were then digitalized to serve as the stimuli of human
parse tree in the identification task. To ensure that participants suffi-
ciently understood how a parse tree could describe a step-by-step
partition process of an image, participants were first instructed to

Figure 16
The Procedure of the Identification Task
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Note. Participants were first presented with a Mondrian-style image. Then they would see a parse tree growing layer by layer on the right side of the screen,
accompanied by a visualization of how partitions were applied on theMondrian-style image on the left. See the online article for the color version of this figure.

Figure 15
Results of the Correlations Between the Information Loss and the Initial Information Content
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understand the correspondence between a parsing process and a parse
tree. Essentially, a parse tree would grow in layers from the root node,
with each node in a layer representing a subpartition from the existing
partitions of the previous layers. Then, a test for participants was
implemented in which a novel image and a parse tree were provided.
Each participant needed to explain correctly to the experimenter how
to parse the image layer by layer according to the parse tree.
For the identification task (human/machine parse tree discrimina-

tion, Figure 16), participants were given the same instruction and test
about how to interpret the parse tree in terms of a parsing process.
During the task, each trial started with a 200 ms fixation followed
by a 300 ms blank screen. Participants were first presented with a
Mondrian-style image. The image was then partitioned step by
step, illustrated by two visualizations synchronously. On the right
side of the screen, a parse tree grew in layers. Correspondingly, on
the left side of the screen, a new layer in the parse tree could be visu-
alized on the Mondrian-style image where the borders of newly par-
titioned parts were thickened. This process is self-paced—the next
layer of image partition and its corresponding parse tree would
only unfold after participants fully understood the partition and
clicked. When the parse tree was completed, participants were
asked to judge whether the partitions were made by humans or mod-
els by pressing one of the two buttons (“F” and “J” on the keyboard).
The dynamic demonstration of a single trial can be found at https://
sites.google.com/view/generativevision-commonsense.

Results

Human-model identification accuracy is shown in Figure 17. For
the HP model, the accuracy was not significantly above the chance
level, M= .49, 95% CI [.45, .53], t(15)=−0.42, p= .68, d=
0.10; BF01= 3.62, thus suggesting a pass of the visual Turing
test. In contrast, for both the NP and US models, their accuracies
were significantly above chance level, NP: M = .59, [.54, .64],
t(15)= 3.82, p= .002, d= .96; US: M= .68, [.61, .75], t(15)=

4.86, p, .001, d= 1.22, thus suggesting they failed the visual
Turing test. However, a direct t-test shows that the performance
of the NP group was much lower than that of the US group, t(30)=
−2.34, p= .026, d= 0.83, suggesting that responses from the NP
model were more difficult for observers to discriminate than those
from the US model. These results are consistent with Experiments
2 and 3, once again showing that the causal structure of hierarchical
Bayesian captures important aspects of humans’ visual interpreta-
tion. Notably, to pass the visual Turing test, the causal structure
must be integrated with the human priors in image generation,
once again supporting the analysis-by-synthesis perspective of
human vision.

Discussion

In the current study, we demonstrate the generative nature of
human vision in the case of Mondrian-style images, using a visual
common-sense perspective. The tasks used in our study constitute
two core attributes of image processing: generation (synthesis) and
interpretation (analysis). First, we implemented an image-generation
task to collect human-synthesized Mondrian-style images. Two
parameters, the branching factor and the evenness factor, were
learned from those images and served as human prior distributions,
which we used to estimate a P(image) for the HP model. We found
the HP model based upon a generation task could explain human
performance in various visual tasks: In the complexity ranking
task, the HP model’s subjective rating on the complexity of
Mondrian-style images was highly concordant with those of
humans; in the telephone game task, it could capture the amount
of information loss that measures how images mutated in an iterative
image-passing procedure; lastly, in the visual Turing task, the HP
model could recover the causal history of Mondrian-style images
as parse trees similar to those recovered by humans, passing the
Turing test as it fooled third-party humans’ judgments on the source
of those parse trees.

In all experiments, we set two baseline models: the causal NP
model that lacks human priors and the noncausal MG model that
learns summary statistics of visual features from human-generated
images. We found that (a) the HP and NP models showed greater
explanatory power on human performance than the MG model
that was absent of a causal process (The lower performance of
the MG model is not due to overfitting. See the same pattern of
results by comparing a regularized MG model with the HP and
NP models in Experiments 1–3 in Appendix B), indicating that
expressing the causal synthesizing process is essential for explain-
ing human analysis on Mondrian-style images; (b) across all exper-
iments, the HP model predicted human performance more
accurately than the NP model free of human synthesized data, sug-
gesting that human preferences in the synthesizing processes are
also a necessity; and (c) the NP model failed the Turing test despite
outperforming the US model in the test. From the above evidence,
regarding the significance of a causal structure and human priors
elicited from image generation, we demonstrate the central notion
of analysis-by-synthesis in the case study of Mondrian-style
images. In the following sections, we will discuss the implications
of results from this case study exploring a deep integration of a gen-
erative model and human experiments. We hope these results can
facilitate future studies on generative vision that apply beyond
Mondrian-style images.

Figure 17
Results of the Visual Turing Test Showing the Percentage of
Trials Correctly Identified by Third-Party Observers on Wheth-
er a Parse Tree was Provided by Humans or One of the Three
Models
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Note. Error bars indicate standard errors. See the online article for the color
version of this figure.
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Implicit Measurement of Generative Vision

In the current study, we tested generative vision in both explicit and
implicit tasks. The visual Turing test we adopted in Experiment 4 was
the most explicit of all tasks. Participants were directly instructed to
recover the generative process of observed Mondrian-style images
by providing parse trees. Although the visual Turing test has only
been recently adopted in cognitive science (Lake et al., 2015), explic-
itly asking participants questions regarding the causal process under-
lying an image has been an approach commonly seen in early
Bayesian perceptions studies (Kersten et al., 2004).
The telephone game task in Experiment 3 takes place somewhere

in-between explicit and implicit measurements. Each participant was
instructed to regenerate a Mondrian-style image, which included a
generative process. However, they were not instructed to come up
with the most likely generative process of the observed image or fol-
low it in their recreation of that image. That is, participants had com-
plete freedom in their regeneration process, while a product
resembling the observed image was the only requirement. Yet, we
found that their products could be best explained by generative pro-
cesses captured by the HP model.
The complexity ranking task in Experiment 2 is an entirely

implicit measurement: The concept of a generative process was
never mentioned in the task when participants were judging the com-
plexity of different Mondrian-style images. Nevertheless, we found
that the HP model built upon the generative process best explained
subjective complexity, indicating that humans recover the causal his-
tory of images in a spontaneous, automatic manner. Our results are
consistent with the previous study, showing that the causal history,
despite never being mentioned in the tasks, was found to bias
humans into perceiving a dynamic transformation on images even
when such real-time changes were unobservable (Chen & Scholl,
2016; Freyd, 1987).
Successes of implicit tasks suggest that generative vision can be

applied to a wide scope of tasks seemingly irrelevant to causal pro-
cesses, which is consistent with the argument regarding the omnipres-
ence of causal understanding in humans (Pearl & Mackenzie, 2018).
Whenwe see a picture in daily life, we often process tasks such as iden-
tifying objects in the scene or memorizing the whole scene. These pro-
cesses, though appearing to be quite different from that of how the
image was generated, often involve contributions from the generative
process. Recent studies have also demonstrated that generative models
have succeeded in explaining various research topics on human vision
that were often conceived as not directly concerning the generative pro-
cess, such as multiple object tracking (Vul et al., 2009), visual working
memory (Brady & Tenenbaum, 2013) and ensemble perception
(Whitney & Yamanashi Leib, 2018). These achievements highlight
the gravity of causality in understanding human vision by showing
that causal history underlies awide range of seemingly noncausal tasks.

P(image) for Psychophysical Experiments

Our research largely relies on the concept of P(image)—the mod-
el’s estimation on the probability of generating an image, which
serves as a unified independent variable that was manipulated to
explain human performance on multiple tasks. Our focus on
P(image) is enlightened by theories in computer vision (S.-C. Zhu
et al., 1997): Given a model, each image should be understood in
the context of a space where all possible images reside. Within an

image space, every image is considered as a single point rather
than a collection of pixels, and all images collectively form a popu-
lation of points. For example, an image with 100 grayscale pixels is
equivalent to a point in an image space of 100 dimensions. From this
perspective, to synthesize an entire image is to sample a single point
from this high dimensional space. Within this space, meaningful
images in the eyes of humans constitute only a tiny portion of all
points, and thus a uniform sampling will most likely result in an
image of meaningless noise. In this sense, a good model of human
vision should be able to map out how humans distribute the proba-
bility mass across their image spaces, with a higher probability
assigned to a more meaningful image. By sampling from this distri-
bution, the model can better synthesize images that people have in
mind.

More than a theoretical discussion, this idea also brings up signif-
icant psychophysical implications. Due to a conservation of proba-
bility mass, which must sum up to 1, assigning some images with
higher probabilities means lower probabilities for other images.
Thus, different P(image)s reflect the priority of human vision—
images with high P(image)s are prioritized with more prompt and
robust processing. This principle is nicely summarized as the No
Free Lunch Theorem in machine learning, which suggests that for
any model, good performances on certain sets of data are necessarily
at the cost of those degraded performance on other sets of data
(Wolpert & Macready, 1997).

Consistent with the prediction from the No Free Lunch Theorem,
from Experiments 2 and 3, we found that images with higher
P(image)s and thus low information content were perceived as less
complex and exhibited greater stability during transmission, poten-
tially suggesting that the visual system is better adapted in process-
ing these images. Nevertheless, our evidence on vision’s priority in
processing images with high P(image)s is still limited, and future
research is encouraged to further explore if this phenomenon is uni-
versal across different aspects of vision, such as whether images with
high P(image)s predict faster visual search (Võ et al., 2019;Wolfe &
Horowitz, 2017), more robust consolidation in working memory
(Vogel et al., 2006; Xu & Chun, 2006), and more precise memory
retrieval (Hyun et al., 2009; Konkle et al., 2010).

Utilizing Information Theory in Combination With a
Generative Model

Information theory is the mathematical treatment of the concepts,
parameters, and rules governing the transmission of messages
through communication systems (Shannon, 1948). Through this
case study on Mondrian-style images where information theory
was heavily used in our dependent measurement of visual perfor-
mance, we can see an interesting trend of how information theory
plays a more important role in understanding human vision.

Directly contributed to the cognitive revolution in the 50 s, information
theory has been deeply embedded into the foundation of cognitive psy-
chology by inspiring a widely recognized conceptualization about the
human mind that the mind works as an information processing sys-
tem. Today, various terminologies in psychology are inspired by
information theory. For example, terms such as “encoding,” “decod-
ing,” “storage capacity,” and “retrieval” are commonly used in cog-
nitive psychology, and all have their counterparts in the theory.

However, it has not been a smooth journey for psychologists to
use the information theory to quantify human mental processes.
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After some early breakthroughs in measuring the capacity of the
human mind in terms of bits (e.g., Hake & Garner, 1951; Pollack,
1952), this approach encountered a great theoretical challenge in
an influential study on short-term memory capacity showing that
the memory capacity of letters could not be described by a fixed
number of bits but instead can be better described by “chunking”
(Miller, 1956). Decades later, reflections were made on the struggle
in applying information theory in empirical research (Laming, 2001;
Luce, 2003). The biggest difficulty was speculated to occur in mea-
suring the probability of stimuli—the objective probability of a stim-
ulus being physically presented in an experiment does not
necessarily reflect its subjective probability in the human mind.
This challenge has been pointed out by Luce (2003, p. 185), “The
probabilities are on a pure, unstructured set whose elements are func-
tionally interchangeable...however, the stimuli of psychological
experiments are to some degree structured, and so, in a fundamental
way, they are not in any sense interchangeable.”Without an accurate
subjective probability serving as input, outcomes from information
theory simply were simply incapable of capturing the human mind.
Retrospectively, we can see how this challenge failed to be

resolved in the early stages of cognitive psychology for two rea-
sons. First, it was simply hard to build a sophisticated probabilistic
model of psychological structures until decades later, when proba-
bility inference as a principle of intelligence became more widely
accepted (Pearl, 1988). In the current study, our HP model is a var-
iant of the nCRP model introduced in early 2010 (Blei et al., 2010).
Other successful applications of information theory also largely
depended on Bayesian probabilistic models, such as explaining
eye movement during visual search (Najemnik & Geisler, 2005).
From this perspective, the lack of sophisticated models capable
of capturing human’s structured subjective probability is being
addressed progressively.
Second, a difficulty was present in eliciting the subjective proba-

bilities from humans. Traditional methods such as verbal reports are
limited in measuring this probability as these responses are subjected
to an ambiguity between a spontaneous response or a calculated cog-
nitive inference of the task (Firestone & Scholl, 2016; Gao et al.,
2009). Recently, eliciting representations in human minds have
undergone significant development by allowing humans to freely
generate stimuli, such as tapping the shape anywhere they like on
a touch-sensitive tablet (Firestone & Scholl, 2014) or directly draw-
ing objects (Fan et al., 2018), beyond measuring humans’ accuracy
and response time from given stimuli. In the current study, the
image-generation task in Experiment 1 allowed humans to partition
Mondrian-style images freely during which the human priors were
elicited. The telephone game in Experiment 3, despite not allowing
for free creation, still allowed for a free regeneration process.
In our case study integrating a structured probability model with

elicited subjective priors, we noticed two interesting observations
regarding the application of information theory to human vision.
First, the structured probabilistic models assign a great variation of
probabilities to different images, which can be taken advantage of
in experimental design. Unlike early works (e.g., Hake & Garner,
1951; Pollack, 1952) focusing on uniform distribution by randomiz-
ing stimuli as much as possible, our study, powered by a probabilistic
model, embraced varied probabilities and turned probability itself
into an independent variable. By deliberately selecting samples
varying dramatically in their subjective probabilities from the syn-
thesizing process, we are able to see that, at a large scale, how

human performance can be significantly influenced by the informa-
tion content of images, therefore showing how information theory
can explain human vision in broad strokes.

Another interesting observation is the change in the focus of infor-
mation theory in understanding vision. In our study, the focus shifted
from measuring the exact human channel capacity in bits to using
information theory as a window to probe the structured representa-
tions in the human mind. It is only when a model accurately captures
the structures of human mental representations can the information
content derived from it strongly correlate with human performance.

Conclusion

In the current study, we demonstrate the generative nature of
human vision using Mondrian-style images as a case study. Our
study highlights the successes in applying image-generation pro-
cesses to explain humans’ visual interpretation, providing direct sup-
port for the analysis-by-synthesis perspective and suggesting that
humans interpret an image by recovering how it was generated. At
the same time, with a “big tasks” paradigm, we show that our gen-
erative model can be well generalized across a wide range of visual
tasks, supporting that generative vision constitutes a type of common
sense. Lastly, our study demonstrates that a structured probabilistic
model combined with elicited human priors is an effective approach
in addressing the long-lasting challenges in applying information
theory, showing that information theory can be a powerful tool in
quantifying the human mind in psychological research.

Context of the Research

We carried out this study to emphasize the perspective that vision
offers more than “what” and “where” but also “why” and “how.”We
hypothesize that vision reflects a deep, underlying causal structure
that serves as a type of common sense for humans to intelligently
interpret the images, construct the hidden causal world, and
support a wide range of tasks in real life. This study uses
Mondrian-style images as a case study to confirm such hypothesis.
Mondrian-styles images are good candidates as they possess inter-
esting graphical structures while allowing for tractable modeling.
Our study explores an integration of psychophysics and computa-
tional modeling that goes beyond traditional measurements of reac-
tion time and accuracy. In our case, model is not just for fitting
experimental data but also helps derive the important hypothesis
of our experiment. We hope this study can encourage more deep
integration of psychophysics and causal modeling in the future.
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Appendix A

Models

Human Prior Hierarchical Bayesian Model (HP)

Probability of Tree Controlled by Evenness Factor
γ—Pγ(tree)

In a Mondrian-style image, there are six primitive rectangles that
would not be further divided, whose configuration reflects the topol-
ogy of the image’s parse tree. Conceptually, the process of applying
partitions to an image is equivalent to building a tree by assigning six
items to all its nodes. This item assignment is a recursive process:
For each node, the items in it will be assigned to its child nodes,
and the same process continues until every child node contains
only one item. This concept can be implemented by a stochastic pro-
cess known as the nCRP (Blei et al., 2010). As the name suggests,
“nest” shows that it is recursive, whereas the “Chinese Restaurant
Process” is the one describing how items are assigned to nodes at
one iteration (CRP, Pitman, 2006).
The CRP originates from its description of how customers

(items) in a Chinese restaurant (parent node) are assigned to
tables (child nodes). It assigns N items one at a time, from
item 1 to item N (Figure A1). Each item is either assigned to
an existing child node or a newly created child node. The prob-
abilities of two possible assignments follow the equation below
(Equation 10).

P(Cn = j|C1:n−1) =
Mj

n− 1+ g
, j ≤ J, to an existing child node

g

n− 1+ g
, j = J + 1, to a new child node

⎧⎪⎨
⎪⎩

(10)

Here, n is the current item being assigned, and Cn represents the
child node to which the item is assigned, whereas C1:n−1 represents
the child nodes to which all previous n−1 items are assigned; j is the
index of a child node, and J represents the total number of existing
child nodes; Mj represents the total number of items already sitting
at node j; γ is the branching factor controlling the process’ tendency

of creating a new child node: A larger γ indicates a higher possibility
that an item will be assigned to a newly created child node.

After all the items are assigned, an assignment plan for this unique
composition of a tree is formed that can be computed into a proba-
bility (Equation 11). Different assignment plans will have distinct
probabilities.

P(B = {b1, b2 . . . bK}) = G(g)g

∑K
k=1

|bk |

G(g+ N)

∏K
k=1

G(|bk|) (11)

Here, B is an assignment plan for N items; K is the total number of
child nodes; bk is a set of items in the order they are assigned to the
node k; and Γ is the gamma function. For example, for Figure A1,
B= {b1, b2}, b1= {“1”, “3”}, b2= {“2”}).

The probability of a tree can then be computed by multiplying the
probabilities of all the assignment plans that can possibly constitute
the tree (Equation 12).

P(tree) =
∏T
t=1

P(Bt) (12)

Here Bt is an assignment plan. T is the total number of item assign-
ments in the tree.

While the index of items in CRP is for identifying distinct cus-
tomers, the abstract primitive rectangles of Mondrian-style images
in our study are indistinguishable from each other. Thus, instead of
concerning the particular order in which distinct entities are
assigned, we are interested in the general topology of the tree
that depends on the total amounts of items (primitive rectangles)
assigned to each child node. That is, we only discriminated assign-
ment plans that show differences in their quantity distributions
(Figure A2). For example, a three-item assignment can only give
rise to two distinct quantity distributions (2-1 and 1-1-1), despite
that the 2-1 distribution can be achieved by three unique assign-
ment plans.

(Appendices continue)

Figure A1
Illustration of Assigning Three Items Into Two Child Nodes

1, 2, 3

1

1, 2, 3

1 2

1, 2, 3

1, 3 2

Note. See the online article for the color version of this figure.
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Correspondingly, we can obtain the probability of each quantity
distribution by summing the probabilities of all assignment plans
that can possibly lead to this distribution (Equation 13).

P A = { b1| |, b2| | . . . bK| |}( ) =
∏K
k=1

C bk| |−1

N−
∑k
1

bk−1| |−1

P B = {b1, b2 . . . bK}( )

(13)

Here, A is the quantity distribution of N items; K is the total num-
ber of child nodes; |bk| is the total number of items assigned in the
child node k; C is the combination calculator.
Further, since a Mondrian-style image is sensitive to the spatial

organization of its parts and subparts, it is important to reflect the
spatial relationship in the topology of a tree—the placement of a
child node matters within the layer it resides. Specifically, here we
use nodes on the left to represent regions on the left/top of a
Mondrian-style image, whereas nodes on the right to represent
regions on the right/bottom. Through this convention, we can distin-
guish parsing proposals that constitute different spatial organizations
with the same quantity distribution of items (Figure A3).
The probability of a quantity distribution should be equally shared

by its distinct parsing proposals (Equation 14).

P(PA
r ) =

P(A)
R

(14)

Here, Pr
A is a parsing proposal with a quantity distribution A; R is

the total number of the parsing proposals with the same quantity
distribution.

Moreover, the nCRP allows for one-to-one assignment, where
items in a parent node can all be assigned to a single child node.
However, this assignment plan is not allowed in our parse tree rep-
resentation since simply transferring items from a parent node to a
child node in a different layer will not result in any change in a
Mondrian-style image (Figure A4). Thus, the probabilities of other
valid parsing proposals are renormalized by excluding one-to-one
assignment.

The probability of a tree can then be computed by multiplying the
probabilities of all parses after the three modifications are made in
the tree (Equation 15), where T is the total number of parsing in
the tree.

P(tree) =
∏T
t=1

P(Pt) (15)

Probability of Partition Given Tree Controlled by
Evenness Factor α—Pα(partition|tree)

With a tree structure determining the number of subparts into
which each part should be parsed, considerations need to be made
on the orientation of cuts and percentage of subparts.

(Appendices continue)

Figure A2
Illustration of the Possible Three-Item Quantity Distributions and Their Corresponding Assignment Plans

Possible item assignment plansQuantity distribution plan

1, 2, 3

1, 3 2

1, 2, 3

1, 2 3

1, 2, 3

1 2, 3

M = 3

M = 2 M = 1

M = 3

M = 1 M = 1 M = 1

1, 2, 3

1 2 3
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For each nonterminal node in the tree, the model would partition
its corresponding part of the image into subparts represented by its
child nodes horizontally or vertically. Here, we assigned an equal

probability of 50% to each orientation. Suppose a node in a tree
has K child nodes. Then, there should be K variables indicating
the percentages of K subparts occupying a part in an image. This
ratio can be modeled by the systematic Dirichlet distribution with
a parameter α, the concentration parameter that is referred to as the
evenness factor in our study to better match the subjective conse-
quence. The probability of observing a set of occupied percentages
(z1, z2…zK) is shown in Equation 16, where Qk is the occupied per-
centages of the k subparts and Γ is the gamma function.

P Qk = z1, z2 . . . zK{ }( ) = G(Ka)
G(a)K

∏k−1

i=1

za−1
i (16)

Herewe define the partition as a particular set of cuts applied to an
image. The probability of observing a partition given a tree, com-
puted by multiplying the probabilities of cut orientations and the
probabilities of percentages in all parsing proposals along the tree,
is shown in Equation 17, where T is the total amount of parses in
the tree.

P(partition|tree) = 1
2T

∏T
t=1

P(Qt) (17)

Noninformative Prior Hierarchical Bayesian Model (NP)

Noninformative Prior of Branching Factor

The NP model shares the same hierarchical Bayesian structure as
the HP model, but with a noninformative uniform prior instead of

Figure A3
Illustration of the Possible Parsing Proposals for a Three-ItemQuantity Distribution and the
Corresponding Visualization on Images

Possible corresponding imageParsing proposals

M = 3

M = 1 M = 2

1

1

1

1

1

1

M = 3

M = 2 M = 1

M = 1 M = 1

M = 1 M = 1

1

11

1

11

Note. See the online article for the color version of this figure.

(Appendices continue)

Figure A4
An Illustration of an Illegal Tree in Our Model

Note. In this illegal tree, all items in a parent node are assigned to a single
child node. See the online article for the color version of this figure.
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human prior. According to the definition of CRP (Pitman, 2006), the
branching factor γ has the constraint of γ. 0. Although a uniform
prior on (0, +∞) would be an intuitive way to construct a noninfor-
mative prior, it is in fact “informative” for the branching factor. This
is because γ. 1 implies that the probability of assigning an item to a
new child node is bigger than that of an existing child node, and thus
a uniform distribution of γ on (0, +∞) would result in a model pre-
ferring wide and shallow trees with more branches, instead of show-
ing no preference in every decision on branching. To resolve this, we
constructed a “noninformative” prior with equal preferences for all
types of trees by using the reparameterization trick (Gelman et al.,

2013, Chapter 5), in which the branching factor γ is reparametrized
in terms of θ, where θ= log10(γ). When computing the P(tree) for
the NP model, we then uniformly sampled θ and applied γ= 10θ

to obtain Pγ(tree).

Noninformative Prior of Evenness Factor

For a similar reason, we also reparametrized the evenness factor α
in terms of β, where β= log10(α).We sampled β and applied α= 10β

to obtain Pα(partition|tree).

Appendix B

Experiments

Experiment 1

Samples of Synthesized Images by Human

Figure B1.

Data Merge

We analyzed the systematic difference between the training
images from both paper and computer environments by comparing
the logarithms of aspect ratios and sizes of the primitive rectangles
in these two types of images. The feature values of all primitive rect-
angles are shown in Figure B2. Most points representing the values
are concentrated in one area of the scatter. The statistical analysis
(Figure B3) showed that no significant differencewas found between
the two environments on logarithms of aspect ratio, Paper:
M=−0.06, 95% CI [−0.20, 0.08]; PC: M=−0.17, [−0.30,
−0.03]; t(598)=−1.10, p= .27, d= 0.09; BF01= 6.11, or size,
Paper: M= 0.167, [0.16, 0.17]; PC: M= 0.167, [0.16, 0.17];
t(598)=−0.003, p= .998, d, 0.001; BF01= 10.99.

Experiments 2–4

Stimuli

In each experiment, 10,000 new images were sampled from the
HP model. These images were then sorted by their information con-
tents computed by the HP model. One image is selected from every
500 images, resulting in 20 images in total. In Experiment 4, we
selected 16 images from 20 images since the posterior distributions
of the parse trees were concentrated on one hypothesis for the other
four images.

Model Comparison With the Regularized “Feature
Multivariate Gaussian Model”

We regularized the multivariate Gaussian model (LMG) by add-
ing a weighted diagonal matrix to the covariance matrix (Gelman
et al., 2013, Chapter 14). The weight λ was selected by a 10-folder
cross-validation method. We further compared this model with
the hierarchical models (HP and NP) in Experiments 1–3.

(Appendices continue)

Figure B1
Samples of Images Generated on Paper and on the Computer Screen

On paper On computer

Note. See the online article for the color version of this figure.
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The most important finding is that the experimental results from the
regularized model did not change our conclusion in any qualitative
way.

In Experiment 1, the image generation task, we first found a similar
training effect as the nonregularizedMGmodel: After being trained by
human-synthesized images, the regularized MG model could explain
new human-synthesized images significantly better than nonhuman-
synthesized images, human-synthesized: M=−6.57, 95% CI
[−6.61,−6.52]; nonhuman-synthesized:M=−14.07, [−14.16,
−13.99]; t(58)= 157.97, p, .001, d= 40.79. Second, we also
further examined which of the trained models, the HP model
or the regularized MG model, could better capture human pref-
erence. The results showed that the HP model significantly out-
performed the regularized MG model in explaining new human
images, t(58)= 173.22, p, .001, d= 44.73.

In Experiment 2, the complexity ranking task, like the original
nonregularized MG model, there was still no significant correlation
between the ranking Z-scores of humans and those of the regularized
MGmodel (r=−.18, 95%CI [−0.57, 0.29], p= .48; BF01= 2.79).
Bayesian Analysis also showed that there is strong evidence in favor
of the NP model being better than the regularized MG model in
explaining the human-ranking Z-scores (BFNP, LMG= 21.43). This
additional evidence still supports that the causality in the Bayesian
hierarchy model is essential in capturing human perceived complex-
ity compared to the regularized MG model.

In Experiment 3, the human iteration task, the correlations
between initial information content and information loss were still
not significant in all three chains for the regularized MG model
(Chain A: r= .30, 95% CI [−0.16, 0.66], p= .19, BF01= 1.64;
Chain B: r= .24, [−0.23, 0.62], p= .31, BF01= 2.24; Chain C:
r= .38, [−0.08, 0.70], p= .10, BF01= 1.04). The results showed
that the regularized MG model could not estimate human subjective
P(image) accurately, the same as the nonregularized MG model,
whereas both the hierarchical Bayesian models can. This suggests
that the causal generative process in Bayesian models plays a critical
role in explaining how images mutate through an iterative image-
passing procedure.
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Figure B3
Violin Plots of the Logarithms of Aspect Ratios and Sizes of the Primitive Rectangles in Images
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Note. Different colors represent the environments in which the images were drawn. See the online article for the color version of this figure.

Figure B2
Scatterplot and Histogram of Data Points Representing the
Logarithms of Aspect Ratios and Sizes of the Primitive
Rectangles in Images

Logarithms of aspect ratios
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Note. Different colors represent the environments in which the images
were drawn. See the online article for the color version of this figure.
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